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5.0 TRANSECT METHODS

5.1 Introduction

One of the main handicaps faced by the practicing population ecologist
is that there really is no wholly reliable census method for most wild a n i m a l
populations.  In spite of the intensive theoretical work done on c a p t u r e -
recapture methods, there yet remain various unresolved issues. Hence, a s
frequently remarked here, it is essential to use more than one method, and t o
do as much cross-checking and testing of assumptions as possible.  It is, o f
course, easy to recommend such a course, but very difficult to follow it.  Fo r
census methods, the only sure test of the underlying assumptions may in f a c t
be to secure an absolute population count.  Even then we are left with t h e
question of sampling errors--an observed discrepancy may simply be due t o
chance alone.

Since the capture-recapture methods require at least one o u t r i g h t
capture of a sample of animals, followed by one or more repeat observa t ions
(which may be visual only), they are necessarily expensive to use in p rac t i ce .
Catch- effort and change-in-ratio methods can only be used effectively on a
harvested population.  These limitations lead to a need for a method based
solely on visual observation since it is often relatively inexpensive and r a r e l y
poses any threat to the population.  For these reasons, and no doubt because o f
wider recognition of the difficulties with other methods, there has r e c e n t l y
been a considerable interest in transect methods.

One of the brighter prospects for the future of transect methods is t h a t
it may be possible to avoid the pitfall posed by the "equal probability o f
selection" assumption required to apply elementary probability models.
Unfortunately, some of the early work on transect methods included a n
equally untenable assumption, that individual animals are randomly a n d
independently distributed over the study area.  I prefer to adopt the w o r k i n g
axiom that this is never the case, even when tests for departure from a Poisson
distribution are "not significant."  I will cheerfully abandon that v i ewpo in t
whenever the power of a test of randomness can be shown to be suitably l a r g e .
Presently, a random distribution of individuals may have to be assumed f o r
various features of secondary importance, such as obtaining an approx imate
notion (really a lower limit) of a variance for an estimate. However ,
bootstrapping offers promise for better variance estimates, with less
di f f icu l ty .

Avoiding the assumption of a random spatial pattern of ind iv idua ls
requires that we substitute random location of transect lines.  Systemat ical ly
spaced lines are much easier to use and have other practical advantages.  Not
the least of these is the fact that randomly located lines may fall very c lose
together so that running one such line can influence animals on a n e a r b y
line. Some ways to avoid this problem are discussed below.  Although we w i l l
not try to go very deeply into the issue here, it should be remarked that t h e
choice between random and systematic sampling for transect methods is not a s
simple a matter as for, say, plot sampling.  For plot sampling, two features a r e
of paramount importance.  One is to avoid a systematic pattern that i s
correlated with a similar pattern in the material being sampled.  The other i s
that variances obtained from systematic samples usually overestimate the t r u e
variance. 
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Some of the transect estimators depend on a probability model that ho lds
strictly true if and only if the transect lines are indeed randomly located. Th is
may place a considerable premium on adhering to random sampling.  Possib ly
the effect of departing from that model may eventually turn out to be of m i n o r
importance.  Until more work has been done of the "robustness" of t h e
estimators, we will adhere to the requirement of random sampling, when t h i s
is at all feasible.  If very large areas are to be covered, it may not b e
practicable to use anything but a systematic arrangement of transect l i nes .
However, the most apparent problems with systematic samples apply t o
situations of a much smaller scale, not when lines are very widely spaced.

5.2 A classification of transect methods

Terminology for transect methods is not well-established.  We w i l l
adhere to a usage that includes three main classes.  The strip-transect i s
essentially a long narrow plot, on which it is basically assumed that all of t h e
individuals present can be seen and tallied.  As such, there is no i m p o r t a n t
difference from plot sampling.  Some modifications tend to make it m o r e
interesting and worth special attention.  These include censusing ma r i n e
mammals at sea, when individuals may submerge for varying periods of t ime,
and thus escape enumeration.  In many transect applications the mobility o f
individual animals is neglected.  This is not feasible for those species that a r e
observed when in motion, such as small birds.  Thus another kind o f
modification needs to be considered.

In most census methods individual objects are regarded as po in t s
scattered around the map.  Sometimes this abstraction either is not p rac t i cab le
or is inefficient.  The investigator may be directly concerned with s u c h
quantities as the canopy coverage of shrubs or the volume of logs left lying i n
a cutover area.  There is then an advantage in measuring the size of the ob jec t
intercepted by the line; hence the descriptive term of line-intercept method.

The third class is perhaps best known, and includes the methods i n
which decreasing visibility of objects with distance away from the t r a n s e c t
line has to be taken into account.  We include all such methods under t h e
general heading of line-transects.  Some writers use the same term to apply t o  
both strip- transects and line-intercepts.  The terminology adopted here h a s
the advantage of being reasonably explicit in descriptive terms.

Where mobile animals are concerned, one important distinction lies i n
whether or not the animal responds conspicuously to the observer's a p p r o a c h .
One can then measure the flushing- distance, i.e., the straight-line d is tance
between observer and animal at the time the animal "jumps" or "flushes," i.e.,
leaves cover.  This is also designated in the literature as the radial distance o r
as the sighting distance. It is essential, however, to also measure the angle o r
the right-angle distance (i.e., the distance between the track line and t h e
an ima l .

When detection depends mainly on the observer locating the animal o r
other object without the help of a flushing-response, there is reason to be l i eve
(cf. Robinette et al., 1974) that the flushing-distance models may not hold, a n d
may lead to biased estimates.  As alternate approach in such cases is based o n
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use of right-angle distances.  It is thus useful to consider a d ichotomous
approach (Fig. 5.1) to the several classes of methods.  It should help r e a d e r s
keep the various circumstances and conditions leading to the several classes o f
methods in mind. A recent development in which the observer remains at a
point and estimates distances to surrounding objects has been known as t h e
variable circular plot, and is largely treated by methods used for r i g h t - a n g l e
t ransec ts .
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methods
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depends
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Searching
by observer

Conspicuous
response by
animal

Numerous 
readily
visible 
individuals

Individuals
not readily
visible
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Fig. 5.1. A classification of transect methods.
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5.3 The line-intercept method

The line-intercept technique has been used by plant ecologists f o r
many years as a means of estimating "canopy-coverage."  In that instance, t h e
basis is simple and direct.  All that is necessary is to measure the fraction o f
the total length of a given transect line that actually intercepts s h r u b
canopies.  The arrangement can be depicted as in Fig 5.2, which represents a
rectangular study area having dimensions W and L, with a single transect ( o f
length, L) intercepting two shrubs, for one of which the appropriate c a n o p y -
coverage measurement ( li ) is indicated.  The technique can also be used f o r
tree canopies by sighting upwards to find the margins of the canopy.

W

 li

 Wi  Transect
  line

L

FIG. 5.2 Dimensions used in the line-intercept method. The shaded areas
represent shrub canopies.

An unbiased estimate of canopy coverage is just the sum of the li
observed on all of the transect lines divided by the total length of t r ansec t s
used. Unless there is some sort of regular pattern in the arrangement of t h e
shrubs, very likely a systematic spacing of lines should not cause trouble i n
this situation.  We repeat, however, that the basis of the results given in t h i s
chapter lies in randomized location of transect lines.
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Two minor points may cause some trouble in actual practice.  One is t h a t
the boundaries of the study area may intersect some shrubs.  A useful r u l e ,
that should be decided on before the area is laid out, is to include such plants i f
they occur on, say, the northern and eastern boundary and exclude them o n
the other two boundaries.  The second common problem is that many use fu l
natural study areas (e.g., habitat types) are very irregular in shape. An e a s y
way to deal with this kind of situation is to proceed as in Fig. 5.3. All that i s
needed is a baseline W that runs the full length of the area, and to ut i l ize
transects of variable length (Li ) with this length measured only within t h e
study area.  The calculations are illustrated in Example 5.1.

L

Lj

i

Fig. 5.3. Line-intercepts on an irregularly shaped area.

Estimates of the numbers or density (number per unit area) o f
individual plants have usually not been made by the plant ecologists in t h e i r
use of the method.  However, there is a simple way to obtain an unb iased
estimate of density, although it "costs" an additional measurement.  A b iased
estimate can be obtained without an extra measurement, and will be descr ibed
first. McIntyre (1953) investigated the use of the measurement li  for dens i t y
estimation, and proposed several possible procedures.  In using the length o f
the transect interception (li ), he considered that the shrubs could b e
represented by a population of circles of varying diameter.  Given r a n d o m
interceptions, it is then easy to derive a theoretical expression for length o f
intercepts which leads to the equation for density:

in which n stands for the number of transects of length L and m for t h e
number of shrubs actually intercepted (for each of which li is measured).  As
already noted, the transects do not have to be of the same length.  The o n l y
change is to replace nL by Σ L i in the denominator above.

√D
nL lii

m

=
=
∑2 1

1Π
                                                    (5.1)
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 Some trials with an artificial population led McIntyre (1953) to sugges t
that his method might well be useful for objects other than circles.  V e r y
likely the best results will be obtained for objects with smooth boundaries a n d
few indentations or "scalloped" edges.  This is because Eq. (5.1) uses rec ip roca l s
of the li,  so that a few very short measurements will have a d ispropor t iona te ly
large effect on the estimate.  To avoid this problem, McIntyre recommended
using the longest chord parallel to the transect line (and another equa t ion ) .
However, some better procedures are given below. Eq. (5.1) should mainly b e
used for an approximate notion of density when canopy coverage is the m a i n
purpose of the survey and an extra measurement is not justified.  

An interesting alternative to McIntyre's approach can be described a s
"needle sampling" (DeVries 1974).  It was originally developed f o r
inventorying logs lying on the ground in cut-over areas.  Instead of a c i r c le ,
the object now is defined as a "needle" (which can be inscribed in a variety o f
only roughly elongate objects) and the famous results of "Buffon's n ee d l e
problem" used to obtain a density estimate.  The chief drawback is that t h e
needles need to be oriented randomly, an assumption that may well b e
questioned in practice.  More details appear in Example 5.2.

Example 5.1 Censusing prairie-dog dens

Line-intercepts were used to estimate the number of dens in a
prairie- dog (  Cynomys   ludovicianus  ) colony by Eberhardt (1978b).  The
colony was elliptical in shape, with a long dimension of about 700 m and
a maximum width of about 500 m.  A systematic sample was used, with 9
transects spaced 66 m apart, and running across the narrower dimension
of the area.  The earth mounds at each den served in the same manner as
shrub canopies in the usual application of the line-intercept method.
For each mound intercepted by the transect line, measurements of the
length of the interception (li) and the mound width (wi), as shown in
Figure 5.2.  It should be noted that wi is taken so as to measure the
probability of interception for the mound, i.e., it is the distance
between transects that just touch the right- and left-hand extremities
of the mound.

The individual observations appear in Table 5.1, which also
includes the distance between mound centers, or, at the ends of
transects, the distance to the edge of the area grazed by the prairie
dogs.  This was regarded as the boundary of the study area.
Calculations of density are thus for the grazed area immediately
surrounding the mounds.  Calculations on the basic data are summarized
in Table 5.2.  Proportion of the area covered by mounds is easily
estimated, being just the total length of intercepts divided by the
total length of transect lines.  Thus for the first transect, it is:
                                 pi = 6.12/228.69= 0.027.
For the entire area, the proportion covered is just the sum of all
intercepts divided by the sum of transect lengths:

                                  p^  = 
ΣTi
ΣLi

   = 115.36/3578.9= 0.0322.

This is a ratio estimate, for which a variance estimate is given in
Chapter 4. Here Ti represents the total length of intercepts on the ith
transect, i.e., T1 = 6.12 m.  The numerator could just as well be
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written  ΣiΣj lij, where j denotes observations on a transect and i
denotes the transect, but using the transect totals makes it easy to see
that this expression has the same form as the ratio estimators of
Chapter 4.

The finite population correction is neglected here since a small
fraction of the population of mounds was actually tallied.  Letting y =
total interceptions (Ti) and x = transect length (Li), the calculations
are:

     [CV( p̂ )]2  = 
1
n   [cyy + cxx - 2cyx] = 

1
9  [ 0.1426 + 0.1507 -2(0.1176)] = 0.00644

The estimated standard error for  p
^
   is then just (0.00644)1/2 (0.0322)

= 0.0032. The coefficients of variation are appreciably larger than
recommended (in Chapter 4) for use of the ratio method. We thus propose
that a simple approach might be used here, i.e., compute a variance
directly from the proportions covered of the individual transects. This
gives p = 0.0329 (averaging the transect values), with a standard error
of 0.0028, so there is little difference from the ratio estimate.

Since widths (wi) of the mounds were tallied, McIntyre's method
for estimating density, Eq. (5.1), should not be used here.  Apart from
the factor of 2/π in the equation, calculations would proceed in exactly
the same way as those utilizing widths, given next.

Although I recommend random sampling because most of the
estimation procedures in transect work are based on random transect
locations, the present example is one in which a systematic sample was
taken.  This was done mainly to study the pattern of spatial
distribution of dens.  With a systematic layout and distances between
dens (Table 5.1), one can study the spatial arrangement of the dens.
This is much harder to do with random transect locations, since random
samples, especially relatively small ones, frequently leave sizeable
gaps in spatial coverage.

In the present example, we can proceed in essentially the same
manner for either random or systematic transect locations.  The
rationale differs somewhat, and needs to be mentioned for each case.  It
may be noted, too, that neither Eq. (5.2) or (5.3) is usable here since
the transect lines are of variable length and the total area is not
known.  When the transects are randomly located, each individual
transect yields an independent estimate of density, which can be
calculated from Eq. (5.2), with n = 1.  Using data from transect No. 1
(Table 5.1), we get (calculations in meters):

                                     = 
1

228.7 [
1

3.81  + 
1

3.12  + 
1

0.86  + 
1

0.81  + 
1

1.12 ] = 0.0169 dens/m2 

The same procedure can be used for each of the other transects,
and the remaining question is one of how to combine 9 independent
estimates (assuming, for illustration, that the transects had been
randomly located along a baseline, as in Fig. 5.3).  Averaging, and

√D
L wi ii

m

=
=
∑1 1

1

1
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computing a variance from the individual transect values, is both
straightforward and legitimate.

The above procedure is often not very efficient, since it does not
take into account the variation in transect lengths.  A logical way to
do this is just to weight the individual density estimates by the
transect lengths, i.e., to calculate:

                                       D^ overall =  ∑
i=1

n

 L i D̂ i     /  ∑
i=1

n
 L i     

which is a ratio estimate just as in Chapter 4.

For a systematic sample, a somewhat different rationale might be
used. This is because the uniform spacing of the transects permits
viewing the area as being broken down into a number of strips of equal
width.  We then calculate an estimate of the number of dens in each
strip, sum these, and divide by the total area (obtained by summing up
the area of the individual strips).  The procedure turns out to give
exactly the same result as above, since a constant strip width is
introduced in both numerator and denominator, and thus cancels out.

Using the data of Table 5.2 gives the following density estimate.

                                              D^ overall = 70.013/3578.9= 0.0196
The coefficient of variation is again estimated as in Chapter 4, without
the finite population correction (for the reasons discussed above):

     [CV( p̂ )]2  = 
1
n   [cyy + cxx - 2cyx] = 1/9[0.1698+0.1507-2(-.042)]=0.0042

The standard error of the estimate is (0.0449)1/2 (0.0196) =
0.0042.  These results are very similar to those for intercept length.
The above example might be converted into a prairie-dog census method if
the number of prairie-dogs inhabiting a representative sample of dens
could be estimated.

Table 5.1. Spacing (di), intercept lengths (li) and mound widths (wi)
for 9 line-intercepts in a prairie-dog "town". Transect no. 1 was the
westernmost transect. Spacing (di) in meters, other measurements in cm.
The first di is distance to first mound from margin of the area and the
last di is distance from last mound to the other margin of the study
area.

# 1 # 2 # 3
di w i l i di w i l i di w i l i

2.84 381 127 16.06 130 7 4 138.0 124 107
46.3 312 114 6.62 290 236 39.69 117 104

39.69 8 6 152 27.4 132 9 6 67.1 218 124
5.67 8 1 8 4 6.62 109 7 4 9.45 168 5 8

20.79 112 135       35.91 401 224 1.89 160 7 4
113.4          612 124.74 282 160 34.02 368 157

228.69 41.58 274 213       27.4 198 3 8     
28.35         1077 9.45        662

287.28 326.97
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# 4 # 5 # 6
di w i l i di w i l i di w i l i

189.00 112 74.00 68.98 7 6 5 8 5.67 9 4 8 1
4.72 274 170.00 24.57 350 244 11.34 175 170

66.15 8 9 66.00 37.8 127 7 4 2.84 7 1 8 4
29.30 256 185.00 34.02 196 7 6 27.40 102 7 9
22.68 7 9 41.00 23.62 140 107 65.20 183 7 4
10.40 376 208.00 17.01 6 1 5 8 60.48 158 132
15.12 406 109.00 5.67 117 112 20.79 7 4 4 8

9.45 340 203.00 31.18 8 6 8 9 12.28 117 112
34.02 249 310.00 20.79 175 168 17.96 9 1 4 8
69.93 9 6 81.00 7.56 229 203 26.46 216 119

8.50 389 338.00 20.79 163 163 9.45 175 122
25.52 4 6 46.00 12.28 274 193 10.40 114 8 1

5.67 8 9 81.00          72.76 201 160 128.52 163 5 3
75.60          1912.0            15.12 198 109       3.78 5 6 112       

566.06 22.68         1814 20.79          1315
414.83 423.36

# 7 # 8 # 9
di w i l i di w i l i di w i l i
12.28 292 158 28.35 109 9 9 19.84 183 137
10.40 132 7 9 83.16 163 163 26.46 102 104

7.56 117 4 1 77.49 8 4 5 1 7.56 8 4 137
49.14 142 135 10.40 142 9 9 15.12 300 114
33.08 239 198 11.34 330 9 1 5.67 277 127
37.80 9 1 9 1 89.78 249 135 46.3 112 8 4

6.62 127 183 43.47 325 183 39.69 5 6 5 1
32.13 9 1 4 6 7.56 198 122 40.64 6 6 8 4
51.98 221 142 2.84 7 4 7 9 11.34 8 6 147
17.96 196 140 11.34 147 132       1.89 244 185       
29.30 117 6 6 9.45       1154 37.8        1170

108.68 292 163 375.18 252.31
274.00 287 274

14.18 140 104       
18.90          1820

704.01
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Table 5.2. Summary of line intercept data for a prairie-dog "town"

Transect         Length of Proportion of   Number of      Sum of        Density
n u m b e r of transect area covered     mounds   intercepts   estimates

      Li by mounds     intercepted          T i           Di
________        __________    __________        ___________   _________   ________
1 228.7 0.027 5 6.12 0.0169
2 287.3 0.037 7 10.77 0.0131
3 327.0 0.020 7 6.62 0.0126
4 566.1 0.034 13 19.12 0.0174
5 414.8 0.044 14 18.14 0.0247
6 423.4 0.031 14 13.15 0.0303
7 704.1 0.026                   14                     18.20 0.0132
8 375.2 0.031 10 11.54 0.0186
9 252.3 0.046 10 11.70 0.0364
                          ______                                         _____                 ______

3578.9                       94                     115.36

Example 5.2 "Needle" sampling

As with most similar sampling problems, this one is most readily
conceptualized in reverse of what happens in practice.  That is, we lay
out the sampling scheme and then introduce, at random, the objects to be
sampled. Here we suppose a systematic sampling pattern of parallel
transect is laid out, and long, narrow objects of length li ("needles")
are randomly distributed over the area.  Let the spacing between the
objects be W, and assume for simplicity, that li   <   W, i.e., that none of
the "needles" is longer than the interval between transects.  The
relevant measurements appear in the figure below. A "needle" of length
li is thrown randomly onto a field of parallel transect. The probability
that it intercepts a transect depends on wi, which in turn depends on
the angle (θ) that the needle happens to assume.

θ
w

i
l

i

W
TRANSECTS

 Dimensions used in "needle" sampling.

We can write the probability of interception for a needle of given
length (li) as:

                                 P = Pr{interception} = 
wi
W   = 

l i  cos θ
W  
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Since the angle (θ) is assumed to be randomly determined, it has a

uniform distribution between 0 and 90o, or between 0 and π/2 in radians.
Hence the frequency distribution of θ is:

                                             f(θ) =  
2
θ   dθ

The expected value of p is then:

                                        E(P) = 
2l i
πW  ⌡⌠

0

π/ 2
 cos θ  dθ = 

2li
πW 

If n needles are observed to intercept the transects, a simple estimate
of the total number (N) of needles in the sampled population is:

                                       N
^

  = n/p
_

  = 
nπW

2    ∑
i=1

n
 

1
l i

 

and the estimated density of needles is:

The main problem with the method is that it is seldom safe to assume
that the needles are randomly distributed.  We thus recommend measuring
wi directly, and utilizing the equations given in the text for density
estimation based on wi.  Students who want a demonstration of the method
can readily construct one with a handful of kitchen matches scattered on
a hardwood or tiled floor.

5.4 Length-biased sampling

The main issue in estimating shrub density from canopy m e a s u r e m e n t
is one that is common to a very much wider class of sampling problems.  Cox
(1962, 1969) has used the highly descriptive term "length-biased sampling" t o
characterize procedures in which the probability of sampling a p a r t i c u l a r
element in the population is proportional to some dimension of that e lemen t .
Such a sample is by no means representative of the population, being v e r y
much biased towards individuals having the greater "lengths."  In the p r e s e n t
case, it is readily evident (Fig. 5.2) that the probability that a given shrub w i l l
be included in a sample taken by the intercept method depends on how "wide"
it is with respect to the baseline (W) of the study area.  The r e l e v a n t
measurement on the shrub is thus wi (Fig. 5.2).  It should be noted that wi i s
the distance between tangent lines drawn parallel to the transect at the r i g h t -
and left-hand extremities of the canopy.

The probability that a given shrub will be intercepted by the t r a n s e c t
line is just wi /W, on either Fig. 5.2 or 5.3.  By measuring wi  accurately, one c a n
thus determine the exact probability that a given shrub intercepted by t h e
transect would be observed, before the transect line was selected. Given t h e
probability of interception for each element observed in the sample, a
straightforward argument can be constructed to derive a density es t imate
(Eberhardt 1978b).  The principal equation is:

√D
n

L lii

n

=
=
∑Π

2
1

1

√D
nL wii

m

=
=
∑1 1

1

                                         (5.2)
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As in Eq. 5.1, m is the number of objects intercepted (and measured) o n
n transect lines randomly placed in a rectangular area of dimensions W and L.

When the study area is not rectangular, a baseline W can be cons t ruc ted
as indicated in connection with Fig. 5.3, and density estimated from:

 where A represents the area of the study plot expressed in the same units
(e.g., square meters) as the linear measurements (wi and W).  A useful
approach when the area is not known is given in Example 5.1, which also
illustrates variance calculations.  Estimates of N, the total population are, of
course, readily obtained from Eqs. 5.1 to 5.3 by multiplying by the area.

Lucas and Seber (1977) have derived equations comparable to t h o s e
above, but use a different transect layout.  They require that the transects b e
of short length, and both randomly located and randomly oriented w i t h
respect to the baseline.  They obtain theoretical variance formulas for some
circumstances. However, in the present state of theoretical and p rac t i ca l
knowledge, it seems advisable to use variances estimated from replicated o r
interpenetrat ing sampling, as in Section 5.12 (below), or by the ratio me thod
of Example 5.1.

The above method can be extended to deal with objects other than s h r u b
canopies, and to aggregations of animals or patches of vegetation, so long a s
the identity and boundaries of each such "object" can be uniquely defined. It i s
also possible to substantially enlarge the area for interception of a g i v e n
object.  A method for doing this is well-known to foresters as B i t te r l i ch 's
method.  An "angle-gauge" is used to determine whether or not the a p p a r e n t
diameter of a tree is greater than a fixed angle, and thus whether or not t h e
tree should be included in a sample.  Readers not familiar with the method c a n
simulate the field operation by extending an arm with the thumb in a n
upright position.  If portions of an object (tree, rock, sign, etc.) protrude o n
both sides of one's thumb, then that object is "in" the sample. If the o b s e r v e r
now moves away from the object until its margins just barely protrude b e y o n d
the sides of the "gauge" (thumb), then that position delineates the boundary o f
the interception area (Fig. 5.4).  Circular objects like trees will have a c i r c u l a r
boundary, but irregular objects will have an asymmetric boundary.  

√D
W

nA wii

m

=
=
∑ 1

1

                                       (5.3)
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ANGLE GAUGE

a

b

Fig. 5.4. Use of an "angle-gauge". Objects are "in" the sample when, as in (a ) ,
the sides protrude beyond the gauge. When the gauge blocks the object f r o m
view, as in (b), then it is not included in the sample.

Although Bitterlich's method is normally used only at fixed s a m p l i n g
points, it can be utilized as a transect method, as was proposed by Strand (1958).
However, this will usually only be practicable for relatively rare objects, s i n c e
"intersection" has to be determined by use of an angle- gauge as each ob jec t
comes into a right-angle position on the transect line. The method might t h u s
be most useful for something like a survey of den-trees in wi ld l i fe
m a n a g e m e n t .

Density may not be the main objective in some studies.  When t h e
volume, weight, or some other measurement is to be estimated, a simple r a t i o
method can be used, and illustrated in Example 5.3.
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Example 5.3 Auxiliary measurements

Often the primary objective of a study will be to estimate some
attribute other than density, or in addition to density.  Thus foresters
are usually also concerned with basal area and volume of timber, while
ecologists often want to estimate the biomass (total Weight) of
vegetation.  Methods for securing such estimates by ratio estimation
were given in Chapter 4.  A related method based on line-intercepts can
readily be derived.  Let Xi be the "auxiliary" measurement, such as

weight or volume of the ith object intercepted.  A well-known way to
estimate the average value of a sample of such objects is simply to
"weight" each object inversely as the probability that it is included in
the sample.  Since this probability is proportional to wi, we get the

simple result:

If the above estimate is regarded as the estimated average on the

jth transect, then variable transect lengths can be adjusted for just as
was done in Example 5.1, i.e.,:

and the same approach can be taken to obtaining a variance estimate
(ratio method).

5.5 Flushing-distance line transects

In the line-transect method, the objects being censused are cons idered
to be dimensionless points, and the probability of detection is assumed to b e
measured by use of distances between observer and object.  Some t r i g o n o m e t r y
is involved, based on the distances and angle illustrated in Fig. 5.5.  Just w h i c h
measurements are taken will depend considerably on the particular f ie ld
situation.  The essential measurements for most purposes are r, the s i g h t i n g -
distance (also called radial distance or flushing-distance), and x, the r i g h t -
angle distance.  From simple trigonometry, any pair of the poss ib le
measurements can be used to calculate the others.  However, precautions n e e d
to be taken to avoid measurement errors.  I strongly recommend against v i sua l
estimation of either distances or the included angle (θ) .
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X

r

TRANSECT LINE

OBSERVER

OBJECT

Fig. 5.5. Relevant measurements for the line-transect method. The vertical
arrow shows the observer's path along a transect line.

In the flushing-distance model, the distance (r) between observer a n d
animal at the time the animal flushes is the essential measurement.  Since a
test of the validity of the model is based on x/r (which is the sine of θ), t h e s e
distances need to be measured as accurately as possible.  When the right- a n g l e
distance method (described below) is used, only the distance x is utilized.  A
model for evaluating relative errors in measurements is described in Example
5.4.

Two basic flushing-distance line transect models have been proposed
(Eberhardt  1968b).  In one model it is assumed that the flushing-distance i s
fixed, i.e., that the individual animal flushes as soon as the observer c rosses
the boundary of a circle with radius equal to this fixed distance.  This model i s
due to Hayne (1949), who noted that the fixed distance does not need to b e
assumed to be a permanent characteristic of the individual animal.  T h e
necessary assumption is that each animal on a census area has a f ixed
flushing- distance during the time when a given randomly located transect i s
run.  In many circumstances it seems quite likely that the f l ush ing -d i s tance
will depend very much on characteristics of the particular location in w h i c h
an animal is resting.

The fixed-distance model permits a simple and direct ana lys is ,
proceeding in the same manner as for the line intercept method.  The s h r u b
canopy is now replaced by a circle of radius r, and it is assumed that t h e
flushing distance (r) is measured accurately for each animal seen.  It is a lso
assumed that animals flush independently, i.e., that startli ng one animal does
not change the behavior of the others.  Analysis of the fixed f l ush ing -d i s tance
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model then requires only noting that wi  = 2ri,  that is, wi is the diameter of a
circle of radius ri.   In analogy with Eq. (5.2), we now have:

with n the number of transects and m the number of observations as before.
Irregular-shaped census areas can also be dealt with in the same manner as
with line intercepts.

In some cases, groups of animals may flush together, as with broods o f
grouse, or flocks of small birds.  If it can be shown, from field data, t h a t
flushing radius and group size are independent, it may be possible to use Eq.
(5.4) to estimate the density of groups and multiply that estimate by a ve r a g e
group size.  If group size and flushing radius are correlated, one can st i l l
estimate the number of groups, but the average of group sizes is a b iased
estimator of the population mean.  

As Hayne (1949) indicated, the expected flushing angle is 32.7o.  A
variety of field studies have yielded average angles that are close to this v a l u e
for animals that "flush."  Robinette et al. (1974), working mostly with a n i m a l s
that do not flush and inanimate objects, obtained wider mean angles.  T h e
underlying theory (cf. Eberhardt 1978b) shows that the f r e q u e n c y
distribution of the ratio (x/r) of right-angle distances (x) to f l u s h i n g -
distances (r) should be that of the uniform distribution.  Hence a simple c h i -
square test (Example 5.5) can be used to check on the validity of the model.  I f
the test shows significant deviations from the hypothesis of a u n i f o r m
distribution of x/r, then the best advice presently available is to utilize r i g h t -
angle distances, as described below.

In the second model it is assumed that the instantaneous probability o f
flushing is a function of the current distance between observer and animal. I t
seems quite reasonable to assume flushing probability to increase steadily a s
the observer approaches, being nearly zero at a long distance a n d
approaching unity in the immediate neighborhood of the animal.  One m i g h t
expect that an animal registers a variety of auditory and visual cues from a n
observer's approach, and that the cumulative effect of those cues results in a n
increased probability of flushing.  Such a model is conveniently labelled t h e
variable- distance model.

It does not seem likely that the two models can be distinguished on t h e
basis of field observations.  Either will lead to a frequency distribution o f
flushing distances, being based on a population distribution of flushing r a d i i
in the fixed-distance model, and on realizations of the probability model in t h e
variable-distance case.  Details of the theory appear in Eberhardt (1978a), a n d
lead to the conclusion that Eq. (5.4) should be used for animals that flush.  T h e
theory also shows that f lushing-distance (r) and flushing-angle (θ) should b e
independently distributed.  Hence a useful further check of conformity to t h e
flushing-distance model is to plot r and θ to see if there is any suggestion o f
association.  Spearman's rank correlation coefficient might be used to test f o r
correlation between r and θ (see, for example, Snedecor and Cochran 1967).
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The fixed-distance model can be used to show that there appears to be a
loss of efficiency (i.e., a larger variance results) if right-angle distances a r e
used when the flushing-distance model holds. It should be noted that t h e
current authoritative reference on “distance sampling” (Buckland et al. 1993)
has dropped the idea of using sighting distances. They remarked that “Hayne ’s
(1949) method is poor if θ  is not approximately 32.7o and may not perform we l l
even if  θ  falls close to this value, i.e., is not a robust method.” Consequent ly
they use only right-angle distances.

Example 5.4 Errors of measurement in line transects

Wherever possible, the relevant measurement for line transect
estimation should be measured directly and as accurately as possible.
However, it may at times be necessary to calculate the appropriate
measurement by trigonometry on the pairs of the measurements of Fig.
5.5.  Anyone doing this should be aware that the effect of incremental
errors may vary considerably, depending on the particular pairs used.
Suppose θ and x (Fig. 5.5) are measured and r is calculated as r = x sin
θ.  Then we note that dr = x cos θ dθ, so that an incremental error (dθ)
in measuring θ results in a corresponding incremental error (dr) in the
estimate of r.  The absolute relative error in r is:

                         |
d r
r  | = 

cos θ
s in  θ    dθ

when θ = 5o,  
cos θ

s in  θ   = 11.43, while for θ = 45o,  
cos θ

s in  θ   = 1, and for θ = 60o,

 
cos θ
s in  θ   = 0.58. Consequently, errors at small angles can have rather serious

effects.

The above approach can be used to evaluate other arrangements, and
a logical extension would be to explore the effects of errors on the
final estimate by incorporating the theoretical frequency distribution.
Doing so in detail calls for a knowledge of likely incremental errors
(dθ) at various angles, but this has not been investigated yet, to my
knowledge.  However, since the theoretical frequency distribution of
angles is proportional to cos θ (Eberhardt 1978b), it is obvious that
errors at small angles ought to be avoided.

Too often, field data show evidence of gross errors.  These appear
in histogram plots of angles and distances as a tendency for

measurements to pile up at angle like 0o, 30o, 45o and 90o, and for
distances to be similarly grouped.  "Trial runs" or pilot surveys are
useful devices for catching such tendencies and training observers.

5.6 Right-angle distance line transects

 When detection depends on the observer, it is unlikely that t h e
flushing-distance (now sighting-distance) models can be expected to hold.  T h e
major summary of field experience is that of Robinette et al. (1974) a n d
suggests that these models do not hold for animals that do not flush and f o r
some inanimate objects.  One prospect that needs study is that the manner i n
which observers scan ahead as they move along the transect may we l l
influence the data.  For the present, the safest course in circumstances w h e r e
detection depends on the observer is to resort to use of right-angle d is tances,
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and, as noted above, only the use of right-angle distances is recommended i n
the recent literature (Buckland et al. 1993).  This may well require l a r g e r
samples because of an added component of variability in using r i g h t - a n g l e
distances.  Hence the need for research to determine whether s i g h t i n g -
distance models might be used, if suitable precautions are taken (in pa r t i cu la r ,
advance surveys should show that the mean sighting angle is very close to 32.7
degrees). As noted above, only the use of right-angle distances i s
recommended in the recent literature (Buckland et al. 1993).

Supposing that the conservative course is chosen, i.e., that the r i g h t -
angle distances are to be used, there then is the question of how to es t imate
density from such data.  

A convenient frame of reference is that of Eberhardt (1968b).  We a g a i n
suppose that the study area is rectangular in shape as in Fig. 5.6 with a
baseline of length W.  It is assumed that virtually all of the observations made
from a given transect line (represented by the solid line in Fig. 5.6) fall w i t h i n
a distance Z on either side of the transect line, and thus within the shaded a r e a
of Fig. 5.6.  Hence if Z is small relative to W we can neglect most b o u n d a r y
problems.  As suggested before, one can adopt the convention t h a t
observations made outside the study area on two boundaries will be inc luded,
and those outside of the other two boundaries will be neglected. So long as Z i s
quite small relative to W this approach should serve to deal with i r r e g u l a r
shaped areas.  To simplify the presentation, we now "fold" the left-hand side o f
the shaded area over onto the right-hand side and depict the ac tua l
observations of positions of observed individuals as in Fig. 5.7.  If we t h e n
project these positions down onto a baseline, as shown by lines in Fig 5.7, w e
can analyze the data in terms of right-angle distances alone.  T h e
mathematical results then used (Eberhardt 1968b) are those of Parzen (1972).
However, instead of an "intensity function," we use a "visibility curve," g (x ) ,
as in Fig. 5.8.  The essential features are that the probability of sighting a n
animal directly on the transect line shall be unity (g(o) = 1.0), and that t h e
curve decrease smoothly away from the transect line.  Further theo re t i ca l
details appear in Burnham and Anderson (1976) , Eberhardt (1968, 1978b) a n d
in Buckland et al. (1993).
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Z

W

Fig. 5.6. Restricted area (shaded) used in many right-angle line transect
methods.

0                             Z             X
BASELINE

OBJECT

PROJECTED POSITION
Fig. 5.7. Projection of observed positions on to a baseline.
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1 . 0

0                              Z                 X

g (x )

Fig. 5.8. A "visibility curve", g(x), showing truncation imposed by n e g l e c t i n g
observations beyond z.

The visibility curve of Fig. 5.8 is then the underlying model t h a t
generates the actual right-angle distances associated with a p a r t i c u l a r
transect, represented by projecting to the baseline of Fig. 5.7.  The position of Z
in Figures 5.6 to 5.8 is arbitrary.  It needs to be such that most, but not all, o f
the actual observations fall to the left of Z, when the entire set of data from a
given study are considered.  The actual selection of Z will be discussed below.

The visibility curve is not itself a frequency distribution, but it can b e
converted to such a distribution if it is divided by a constant that is t h e
integral of g(x), as shown by Burnham and Anderson (1976) and E b e r h a r d t
(1978b).  Thus we have:

                                              f(x) = 
g(x)
µ                             (0 <  x  <    ∞)                      (5.5)    

where                                µ =  ⌡⌠

x=0

∞
 g(x) dx .

A simple example of a visibility curve is the negative exponential a s
used by Gates et al. (1968) and Gates (1969).  They found that it fitted data o n
flushing of ruffed grouse (Bonasa umbellus) quite satisfactorily, and g a v e                                
estimating equations for both flushing-distance and right-angle distance data.
An objection to this curve, however, is that it drops off at a constant rate. As
suggested by Eberhardt (1968b), a more logical curve would be one that i s
nearly flat near the transect line, dropping off sharply some distance f r o m
the line, and then "tailing off" more gradually.  Such a curve accommodates
both the realistic assumption that a narrow strip census is feasible (i.e., t h a t
nearly all animals will be seen on a narrow strip centered on the t r a n s e c t
li ne) and the observational fact that a few animals are seen at some
considerable distances from the transect line.  One curve fitting t h i s
requirement is the "reversed logistic" proposed by Eberhardt (1968) a n d
described in more detail by Eberhardt (1978b).
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The negative exponential curve has one parameter while the r e v e r s e d
logistic has two.  If one parameter of the latter curve is very small, it becomes
virtually indistinguishable from the negative exponential.  This property w a s
used by Eberhardt (1978b) to explore the effect of small deviation from t h e
negative exponential on the resulting density estimates. The s imula t ions
conducted by Eberhardt (1978b) yielded biases (overestimates) of 17 p e r c e n t
and 50 percent if the true model were one of the two reversed logistics but t h e
negative exponential were assumed to be the appropriate model.  Consequent ly
we do not recommend assumption of the negative exponential model.

A variety of other models have been proposed in the literature.  T h e
half-normal (Hemingway 1971) is a one-parameter model having the s h a p e
suggested above as appropriate.  Anderson et al. (1978) have proposed a l og -
linear model, while Pollack (1978) presents an exponential power series model.
Both of these "families" of models include the negative exponential and h a l f -
normal and provide considerable flexibility.  The immediate problem is a l a c k
of published experience covering a variety of field data.  We will thus not t r y
to make any specific recommendations about the use of particular f r e q u e n c y
dis t r ibut ions.

One of the several recent developments in frequency dis t r ibu t ion
models is the "Fourier Series" estimator of Crain et al. (1978).  It provides a
highly flexible model that may be expected to give very good fits to field data.
Both theoretical and simulation studies were employed by Crain et al. (1978) t o
show that the method has relatively small bias and high efficiency. That w o r k
has been followed up in detail, with several new models, and the resu l t s
published in “Distance Sampling” by S. T. Buckland, D. R. Anderson, K. P.
Burnham, and J. L. Laake (1993).  Computations are available in the p r o g r a m
DISTANCE  which is available on the worldwide web along with a
comprehensive manual and the full text of the book by Buckland et al.

Example 5.5 Testing flushing-angles

A simple test is available to check whether observed angles are in
conformity with the underlying theory.  The test is actually based on
the distribution of sinθ, and holds for either the fixed or variable
flushing- distance model (Eberhardt 1978b).  It is, however, most
readily derived for the fixed flushing distance model. From Fig. 5.5,
sin θ = x/r. Consider a fixed flushing radius of r.  Given that the
animal is flushed (i.e., that the transect passes through a circle of
radius r about the animal), and that transects are randomly located, it
is evident that x will take on any distance between o and r with equal
probability.  Hence the distribution of x/r is uniform over the interval
0 to 1.  A simple test is then a chi-square test. Divide the interval
from 0 to 1 into equal sub-intervals, with the number selected so that
the smallest expected number is about 5, and tally the observations of
x/r by intervals.  An example (from Eberhardt 1978b), appears in Table
5.3.

There are 84 observations, and 10 subintervals were used, so that
the expected number in each interval is 8.4.  The chi-square test is
then:
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It is worthwhile to tabulate individual deviations and chi-square
calculations (as in Table 5.3), so that any aberrant observations can be
identified if the test shows statistical significance.  In the present
example, the chi-square value (10.73) is well below the 95 percent
significance level (18.31) for 10 degrees of freedom.  Students should
note that 10 degrees of freedom are used here, because the expected
value is obtained independently from the data.

Table 5.3 Chi-square test for uniformity of sin θ  data for a census of
the side-blotched lizard.

I n t e r v a l Number of Deviations from Chi -square
( s i n  θ           = x/r) observa t ions              expected number                        v a l u e                                           

0.00-0.10 10 +1.6 0.30
0.10-0.20 7 -1.4 0.23
0.20-0.30 8 -0.4 0.02
0.30-0.40 15 +6.6 5.18
0.40-0.50 10 +1.6 0.30
0.50-0.60 10 +1.6 0.30
0.60-0.70 6 -2.4 0.68
0.70-0.80 4 -4.4 2.30
0.80-0.90 9 +0.6 0.04
0.90-1.00 5 -3.4 1.38
                           _____                 ______                   ______

                    84          0.0               10.73

5.7 Density Estimation

The generally accepted estimator for right-angle line transect models is
(Seber 1982), Buckland et al. (1993):

                                                             D^  = 
m
2L  (

1̂
µ)                                                       (5.6)   

where m is the number of objects observed, and L is the (total) length o f
transect on which the m objects are observed.  The estimate of the r ec i p roca l
of µ is calculated from the observed distances.  This is done by noting that, i n
Eq. (5.5), f (0) = 1/µ  .  Thus the main objective of the various methods is t o
obtain an estimate of the frequency of observations "on" the transect line, o r
f(0).  Consequently, an equivalent form of Eq. (5.6) is just:

                                                                 D^  = 
m
2L  f(0)^                                                   (5.7) 

Looking back to Eq. (5.4), it may be observed the Hayne's (1949) estimator is o f
this form, except that f(0) or the reciprocal of µ is estimated from the a ve r a g e
reciprocal of flushing distances, i.e.:
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and that n transects, each of fixed length L, were used.

Since, as we have already remarked, the "state of the art" and the t h e o r y
of line transect are now described in detail by Buckland et al. (1993), we w i l l
not attempt to review all of the currently used methods.  Some examples a p p e a r
in Example 5.6 and I recommend consulting the current literature for r e c e n t
improvements. I suggest use of the "distribution-free" methods of the n e x t
section as a check on any other method used.

Example 5.6  Density estimation for line transects

Calculations for two of the methods will be illustrated on the set
of data in Table 5.4.  These data come from actual observations made in
a line transect study (Eberhardt 1978b) of the side-blotched lizard (  Uta
stansburiana  ).  An artificial grouping of the data into 8 transects has
been used here as a device to illustrate variance calculations.  Since
these data appear to conform to the theoretical model for animals that
flush, it may be possible to use  Hayne's method, Eq. (5.4).  It may be
remarked here that the "flush" exhibited by these animals is a dart for
cover, and that nearly all sightings result from this cue, as basking
animals are not readily seen before they move.

Using Eq. (5.4) gives the results of the summary table (Table
5.5).  The equation is used with n = 1 for individual transects, i.e.,:

                                         D^  = 
1

2Li
   

∑

i=1
m  

1
r i

  

The individual transect results can be combined with the ratio estimate
of Example 5.1:

                                D^ overall =  ∑
i=1

n

 L i D̂ i     /  ∑
i=1

n
 L i     

Variance calculations proceed in the same manner as for line intercepts
(Example 5.1

√ [ ]D
m

nL m r nL rii

m

ii

m

= =
= =
∑ ∑2

1 1 1
2

1

1 1



                                                                                                                                         5.24

Table 5.4. Line transect data from a lizard study. Flushing (r) and
right-angle distances (x) for individual transects.

     #1                #2                      #3                 #4                    #5                    #6
_______        _______            _______ _______ _______ _______
r x r x r x r x r x r x
46 46 91 51 137 29 60 43 51 23 91 16
82 26 42 25 21 17 67 34 42 14 74 58
59 10 36 32 84 25 51 18 109 57 57 10
42 36 126 88 62 25 68 37 120 43 101 40
40 35 43 15 79 37 55 13 60 32 74 72

100 96 80 0 55 33 39 32 46 13
70 0 168 90 81 32 46 15
95 35 90 73 67 18 99 37
95 32 78 25 55 0 87 0
61 41 165 75 58 11
58 42 269 33
24 13 269 25

85 35
168 98
50 0
83 4
42 27
75 10

     104 0
     #7                 #8
_______ _______
r x r x
153 48 85 79
112 45 112 55
126 34 94 0
61 45 78 15
53 43 158 68
78 0 153 72
53 17 153 74
59 49 42 27
78 64 42 27
150 146
128 34
114 38
90 54
93 24

To illustrate the use of right-angle distances, we use the half-
normal distribution.  This requires the assumption that right-angle
distances from the transect line have the relative frequency given by:

                                   f(x) = 
2

2π
   exp(

-x2

2σ2 )

This is just the familiar normal distribution, but with µ = 0, i.e.,
centered on the transect line.  Also, the distribution is multiplied by
a factor of 2 in order to permit "folding-over" half of the
distribution, and thus considering observed distances as though they a l l
fell on one side of the transect line.  Recalling that the general form
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of the density estimator for line transects calls for an estimate of
f(0), we get:

                                                          f(θ) = 
2

2π σ
 

The parameter (σ) is estimated just as it is for the normal
distribution, i.e.,:

With the exception that the divisor is m, rather than m-1, since in this
case the mean is known (i.e., is zero).  Inserting the above expression
for f(0) in Eq. (5.7) gives:

                                                       D^ i = 
m

L i 2π σ̂ i
 

The individual transect estimates appear in Table 5.4, and are combined
just as with Hayne's method above:

                    D^ overall =  ∑
i=1

n

 L i D̂ i     /  ∑
i=1

n
 Li    = 

0.822
500   = 0.0016.

Table 5.5. Summary of line transect data for a lizard study.

Transec t L e n g t h Number of LiD
^

 i LiD
^

 i
n u m b e r  L               i            observa t ions        (                       Hayne)         (half-normal)                                           
1 30 5 0.050 0.061
2 50 6 0.052 0.040
3 60 12 0.109 0.169
4 80 9 0.066 0.076
5 100 19 0.129 0.197
6 80 10 0.074 0.113
7 60 14 0.083 0.100
8 40 9 0.056 0.066
                           _______          _____                         ______          _______

   500                   84                              0.619    0.822
Density estimates                                                         0.00124          0.00165

5.8 A "distribution-free" method

The terms, "parametric models" and "non-parametric models" have b e e n
used in the literature to classify line transect methods.  We prefer to avoid t h a t
classification because the procedures thus far used mostly do in v o l v e
parameter estimation.  Hence we prefer to label the method presented here a s
"distribution-free," since it does not require the specification of a p a r t i c u l a r
frequency distribution or "visibility curve."  Burnham and Anderson (1976)
suggest some other approaches that do not depend on a specific f r e q u e n c y
d is t r ibu t ion .

The method presented here is one originally devised by Cox (1962, 1969)
and adopted for right-angle line transects by Eberhardt (1978b, 1979).  A
physical analogy, "length-biased sampling" was described in Section 5.4, i n
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reference to l ine-intercept methods.  In that situation the physical s ize
(length) of an object determines the probability that it will be intercepted by a
randomly located transect line.  However, a much larger class of s i tua t ions
may be included if one considers what Patil and Rao (1978) have described a s
"weighted distributions."  They derive an equation of the form of Eq. (5.5) b y
supposing that the true frequency distribution cannot be observed d i rec t ly ,
and that the observed frequency distribution is somehow "weighted" in t h e
observation process.

In li ne transect work, the weighting function is what we have called a
visibility curve above (cf. Fig. 5.8).  Given random location of transect l i nes ,
the probability that an object will actually exist at a right-angle distance, x,
from the transect lines is given by a uniform distribution. That is,
theoretically, any distance is equally likely.  However, the distances w e
actually observe depend on the visibility curve.  Hence objects directly on t h e
transect line are seen with certainty (g(0) = 1.0), while those at a cons iderab le
distances are seen very infrequently.  Hence, formally, Eq. (5.5) should b e
written as:

                                                          f(x) = 
g(x)dx

µ                                                       (5.8)  

so that dx represents the uniform probability that an object exists at a n y
distance x from the transect line, and g(x) is the "weighting function."

The main value of all of this is theoretical, in that it lets us extend t h e
rather concrete notion of a line intercepting an object to the more abs t rac t
notion of a visibility curve.  Further details and applications to a wide range o f
problems can be found in Patil and Rao (1978) and in the references cited i n
that paper.

Cox's method depends on tallying observed distances within f ixed
intervals away from the transect line.  Thus all of the observations within a
distance,∆ , on either side of the line are added up and used to estimate the t r u e
proportion of all observations, denoted p(0,∆ ), that fall in that interval. H e n c e
if there are k1 observations within the distance ∆ , we estimate p(0,∆ ) = k1/m   .
Similar estimates are constructed for p(∆ ,b∆ ), the next pair of parallel be l t s
(Fig. 5.9) and p(b∆ ,d∆ ).  Cox's original method used only two intervals, but a n
extension to three or more intervals is readily obtained (Eberhardt 1979).
However, it appears that the variance of the resulting density es t imate
increases as the number of intervals is increased (Eberhardt 1979), so we w i l l
limit the present discussion to two intervals.

An estimator for two intervals is (Eberhardt 1979):

                                               (
1̂
µ)  = 

(b2 -  1 ) p̂( 0 ,∆ )  -  p̂(∆,k∆ )
b(b-1)∆                                  (5.9) 

where ∆  is the width of the inner interval and b∆  is the width of the inner two

intervals (Fig. 5.9).  The quantities p̂(0,∆ )  and p̂(∆ ,b∆ )  are estimated a s
described above, i.e.,

                                  p^(0,∆)  = 
k1
m             and       p^(∆ ,b∆)  = 

k2
m                               (5.10) 
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where there are k1 objects observed within the belts of the width ∆ on e i t h e r
side of the transect line, k2 are seen within the two intervals (right- and l e f t -
hand sides of the transect line, Fig. 5.9) demarcated by ∆ and b∆ , and m is t h e
total number of objects observed regardless of distance from the transect line.

∆ ∆∆∆                 b            dbd ∆∆0

k
1

k
2

Fig. 5.9. Intervals or "belts" used in Cox method.

Having estimated the reciprocal of µ, all one needs to do is insert t h a t
estimate in Eq. (5.6) to estimate density per unit area, where the units are t h o s e
in which right-angle distances (xi)  and length of transect (L) are recorded.
Cox (1969) used b = 2, so that the inner and outer intervals are equal (i.e., t h e y
are both of width ∆ ).  Since m appears in the numerator (Eq. 5.6) and in t h e
denominators of p(0,∆ ) and p(∆ ,b∆ ), it effectively cancels out in t h e
calculations.  Hence, if one combines Eqs. (5.6), (5.9) and (5.10), the result is:

                                                     D^  = 
(b+1)k1 - k2

2Lb∆                                                 (5.11)  

where we have used the result that (b2 - 1) = (b + 1)(b - 1).  One a p p a r e n t
consequence of this simplification is that m (the total number of objects) is n o t
required for density estimation.  However, that quantity is essential i n
studying variability of the estimates, and thus should be recorded, except i n
special circumstances.  One such situation may be in cases w h e r e
identification of objects beyond a distance of b∆   is uncertain.  Calculations a r e
discussed in Example 5.7.

An interesting variant of Cox's method is the case where only o n e
interval, of width ∆  (on each side of the transect line), is used.  This reduces Eq.
(5.11) to:

                                                                 D^  =  
k1
2L∆                                                      (5.12)  

We then have simply a strip transect, or "Kelker's method," in which it i s
assumed that all of the objects are observed within a strip of width 2∆ .  It m a y
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be noted that if the number of objects observed in the two belts is equal, i.e., i f
k1 = k2 = k, then Eq. (5.11) becomes:

                                                  D^  = 
(b+1)k  -  k

2Lb∆   =  
k

2L∆ 

so that we again have a strip transect.

Another variant, of interest to ornithologists, is Emlen's (1971) method.
It turns out (Eberhardt 1978b:15) that Emlen's method essentially reduces t o
use of Kelker's method, or a strip transect.  Details appear in Example 5.8. S ince
the assumption that all animals (or objects) are seen in the inner strip is a n
important and uncertain item, we recommend that two intervals be used i n
p rac t i ce .

Variance estimation for the Cox method is a subject that needs m o r e
research, particularly research supported by field data.  The weak point i n
present theoretical approaches is that they assume that the number o f
individuals observed (m) is Poisson-distributed, which essentially amounts t o
assuming random distribution of individuals.  Since this is not likely to o c c u r
in practice, the present variance estimates are likely to be too low, i.e.,
underestimates.  For the Cox method with two intervals, a c o n v e n i e n t
expression of the variance is obtained as (Eberhardt 1979):

                                               [C.V.(D̂ )]2 =
.
  

(b+1)2k1+k2

[(b+1)k1-k2]2
                                       (5.13) 

where b, k1, and k2 are as defined above, and C.V.(D^ ) stands for the coe f f i c ien t

of variation of the density estimate.  For practical purposes, if C.V.(D̂ ) equa ls ,
say 0.25, one can propose approximate confidence limits on an estimate a s
being the estimate + 50 percent (i.e., we round the usual 95 percent n o r m a l   
curve "Z-value" of 1.96 to 2.0).

An alternative procedure for variance estimation is to employ t h e
"replicate sampling" idea, i.e., to break the total sample down into r a n d o m
subsets, calculate a density estimate from each such subset, and obtain t h e
variance estimate from the resulting set of independent density estimates.

For planning purposes, a rough approximation (Eberhardt 1978b) is:

                                                        C.V.(D̂ ) =
.
 (

4
m) 1/2                                               (5.14)

Two examples on actual data (Eberhardt 1979) suggest this equa t i on
underestimates the results of Eq. (5.13) by roughly 10 percent.  Seber (1973)
and Eberhardt (1978b), using different approaches, suggest a comparab le
result for flushing-distances (sighting-distances, radial distances) to be:

                                                        C.V.(D̂ ) =
.
 (

2
m) 1/2                                               (5.15)
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We thus have an indication that the variance using right-angle distances a n d
the Cox method may be much as twice that obtained for flushing distances.

Example 5.7 The "Cox" method

The right-angle distances of Table 5.4 can be used to illustrate
the Cox method, as given by Eq. (5.11).  The main problem lies in
selection of the two intervals ∆, and b∆.  My recommendation (cf.
Eberhardt 1979) is to include about 80 to 90 percent of the observations
inside b∆.  If we let b = 2 and ∆= 35, then b∆ = 70. Although density
can be calculated directly from Eq. (5.11), in this case it would be
desirable to make the intermediate calculation represented by Eq. (5.9),
for use in comparison with the results of Example 5.6 above.  This is
because the transect lengths used in the example are artificial, so the
best comparison is to estimate (1/µ) or f(0).  Hence the entries under
sums of LiDi from Table 5.5, are best compared with the estimate
obtained from the Cox method.  Note, however, that these quantities need
to be doubled for comparison.  Calculations with the Cox method can be
carried out transect by transect, and it is probably worth doing so on
Table 5.4 just to see how the estimates behave.  With small samples,
however, it is preferable to make a single estimate for the entire area
(i.e., combine all of the observations in Table 5.4).

Example 5.8 Emlen's method

A method due to Emlen (1971) became quite popular with
ornithologists. It depends on a "coefficient of detectability" which is
determined by an intensive study on one area, and then used to adjust
counts in other areas. The basic approach is to use the observed data to
determine where visibility drops off.  If we let this point be ∆, the
assumption is that all birds are seen between the transect line and ∆.
Suppose k1 birds are counted in this strip, and that we want to estimate
the number of birds expected to be found between the transect line and
some outer boundary, R.  The logical estimate is just (k1/∆)R.  Emlen
divides the total number of birds (k) seen between the transect line and
R by this projected number and calls this the "coefficient of
detectability":

                                                              C.D. = 
k∆

k1R 

This clearly amounts to an estimate of the proportion seen of the birds
present between R and the transect line.  Emlen then proceeded to divide
the number seen (k*) on a new area by the coefficient of detectability,
and regarded this as a population estimate for the new area:

                                                              N
^

  = 
k*k 1R

k∆  

Actually R is selected so that a fixed transect length (1 mile) gives N

as the number of birds per 100 acres.  Hence N
^
  is really a density, and

we note that if units of feet are used 2RL = 100(43,560) = C, so we can

write R = C/2L and express N
^
  as:

                                                            N
^

  = 
Ck*
k    [

k1
2L∆ ]

Since the quantity in brackets is just Kelker's estimate [Eq. (5.12)],
Emlen's procedure turns out to have the following steps:
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(1) Estimate density on one area by Kelker's method, while
counting all of the birds visible on 100 acres (k).  

(2) Count all of the birds visible on 100 acres (k*) on a new
area.

(3) Use the ratio k*/k to project the Kelker estimate of the first
area to the second area.

Several limitations of the method seem apparent.  One is that the
visibility curve is assumed to have a particular form, i.e., all birds
are seen out to some particular distance.  A second limitation is that
it is assumed that we can located that distance from observed data.  A
third, and major problem, is that it is assumed that the visibility
curve remains constant from area to area, and time to time.

These several limitations can be avoided simply by taking one
precaution. That is to record separately all birds seen between the
transect line and the distance ∆ on the second area.  One then can use
Eq. (5.11) with b = R/∆ and get a direct estimate of density
independently on the two areas.

5.9 Assumptions underlying line transect methods

A decision to use a particular line transect method needs to take i n t o
account the underlying assumptions.  The list given here is based on s e v e n
assumptions given by Gates et al. (1968) and Seber (1973,1982), but i s
rearranged to show just which assumptions are required for a given l i n e
transect method. We assume that randomly located transect lines are uti l ized,
and thus drop one restrictive assumption, that of random location of t h e
objects being censused, which is not required for randomly located t r a n s e c t
lines (Eberhardt 1978b).

The first three assumptions are basic and whether or not they are m e t
will depend on behavior of the observer and of the animal being censused.
They are:

(1) No animal (or object) is counted more than once on a given transect line.
(2) When flushed, each animal is seen at the exact position it occupied w h e n
startled by the observer's approach.  Obviously this does not apply to a n i m a l s
or objects that are fixed in place during the census.
(3) The response behavior of the population on a census plot does not c h a n g e
during the course of running a given transect.

Definitions of the response behavior serve to distinguish the va r i ous
methods.  One of these is achieved by defining a visibility curve as follows: T h e
probability that an animal, or object, being seen, given that it is at a r i g h t -
angle distance x from the transect line is a simple function, g(x), such t h a t
g(0) = 1 (i.e., animals, or objects directly on the transect line are observed w i t h
certainty).  These assumptions then suffice for right-angle line t ransec ts .
Assumption (3) now means that the visibility curve does not change d u r i n g
the course of running a given transect line.
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A fourth assumption serves to define conditions for the fixed f l u s h i n g -
distance line transect.  This assumption defines the response behavior of t h e
an imals :

(4) Individual animals have fixed flushing radii, during the course of r u n n i n g
a given transect, and flush if, and only if, an observer comes within t h i s
characteristic distance (r).  It is of course, also necessary to assume that r i s
accurately observed and recorded.

An alternative assumption, plus some others, leads to the v a r i a b l e -
distance line transect:

(4a) The animals are homogenous with regard to their inherent r e s p o n s e
b e h a v i o r .
(5) The sighting of one animal is independent of the sighting of another.
(6) The instantaneous probability of flushing is a function, f(r), of the rad ia l
distance, r, between animal and observer.

These several assumptions lead to the theory of the variable d is tance
model (Eberhardt 1978b).  It may be remarked that one could assume a
particular mathematical model for f(r) and proceed to derive e f f i c i en t
estimates for density estimation under such a model.  This has been done i n
some of the literature (e.g. Gates et al. (1968) and Gates (1969)). We h a v e
previously mentioned two tests that should be applied to observed data b e f o r e
the flushing-distance method and Eq. (5.4) is used (cf. Example 5.5). We w i l l
return to discussion of some aspects of the above assumptions in a s u b s e q u e n t
section on sampling design.

5.10 Strip transects

The simplest case of a strip transect occurs when the objects b e i n g
censused are readily visible and sufficiently abundant to permit using a
restriction on width of the strip covered.  The method then amounts simply to a
sample survey using long, narrow plots.  The methods of Chapter 4 can then b e
applied. A basic assumption is that all of the objects on the plot are tallied.

When there is a reason to believe that not all of the objects on the p lo t
are seen, then it may be necessary to introduce a visibility-curve.  We h a v e
preferred to treat such situations under the heading of right-angle l i n e
transects (as in Fig. 5.1).  However, this is mostly a matter of preference, a n d
one could classify such situations as "strip transects using visibility- cu rves . "
This may be a more natural-seeming description in circumstances where a
finite boundary exists on strip width.  An example is the study of Anderson a n d
Pospahala (1970), who counted duck nests on dikes.  The width of the dike t h e n
provided a natural boundary on strip width.  However, the methods o f
estimation will remain essentially those treated here as right-angle l i n e
transect, except that the total number of objects tallied (m) will be those ta l l ied
within the strip, and the visibility-curve, g(x), is truncated (cut-off) at t h e
strip boundary.
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An important issue in such situations is that a visibility-curve has t o
enter the calculations of density in some manner.  Several publications h a v e
used a procedure to correct for reduced visibility away from the transect l i ne .
This consists of summing the total observations from the entire survey f o r
various intervals out from the transect line.  With the symbols used above, o n e
would thus have k1 observations in the interval (o,∆ ), k2 in (∆ ,b∆ ) and so o n .
It is then assumed that all of the animals are seen in the innermost i n t e r va l ,
and the fraction seen in the other intervals is calculated from the observed
data, i.e., k2/k1, k3/k1, etc.  These rates are then used to adjust daily (or week ly ,
etc.) observations in the outer intervals, supposedly correcting them for t h e
fraction missed.  However, this procedure simply results in adjusting all of t h e
intervals to equal the central one (to k1 observations), so one may as well u s e
only that interval and not bother with the rest.  The same kind of p r o c e d u r e
has also been used to adjust for numbers seen by time of day when c e r t a i n
observation periods give the highest counts.

While the Cox method (Sec. 5.8) does not require postulation of a spec i f i c
visibility-curve, it does take the existence of such a curve into account in t h e
estimation procedure.  All of the other methods actually used thus far do
specify a particular curve or "family" of curves.

Strip transects have been widely used in aerial surveys, largely o f
terrestrial animals.  It is now well-established that not all of the animals o n
the strip are seen by the aerial observers.  Caughley (1974) has summar ized
evidence on this point.  Caughley et al. (1976) have conducted some
experiments designed to explore the effects of strip width, altitude and speed
on the numbers of animals counted.  They go further, and use mu l t i p le
regression equations to attempt to correct for these variables.  However, I do
not recommend the use of such equations, because a very uncertain sort o f
extrapolation is utilized--going from the observed data to zero strip w id th ,
speed, and altitude.

Two alternatives seem worth consideration.  One is to utilize s u c h
experiments to arrive at a standard set of observation parameters, and to t h e n
regard the observed data as an index.  When accurate counts by a n o t h e r
method are feasible, one can then attempt to go further by " g r o u n d- t r u t h "
correction.  A variety of special precautions need to be taken in aerial su rveys ,
and are described in a publication by Norton-Griffiths (1975).

As mentioned in Sec. 5.8, the Cox method might be applied to a e r i a l
surveys in the form of Eq. (5.11), using two strips.  This approach i s
particularly attractive in that it will not ordinarily be possible to attempt t o
record right-angle distances.  About all that is likely to be feasible is to r e c o r d
observations in two intervals, demarcated by markers on windows and s t ru ts .
Since most such surveys are conducted by observers who look out side w indows
of small aircraft, a particular drawback to this arrangement needs to be noted.
This is that the visibility-curve is not likely to be that of Fig. 5.8, w i t h
certainty of observation of animals directly on the transect line.  This i s
because the transect line is directly under the aircraft, and not readily v iewed
by the observer.

Unless a specially fitted-out aircraft is available, with provision for a
"bow" observer to look directly forward and down, the only alternative seems
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to be to attempt to locate, by experience, the right-angle distance that can b e
viewed effectively and comfortably by observers.  The observers should t h e n
concentrate on "guarding" (covering) a fairly narrow strip starting at t h a t
point.  This strip then becomes the interval (0,∆ ) and frequent glances up a n d
out are used to tally animals in the outer strip (∆ ,b∆  ).  The critical point is t o
concentrate enough effort on one line which is considered to be "the" t r a n s e c t
line (normally there will be one such line on either side of the aircraft).  I n
larger aircraft, it may be feasible to assign two observers to a side.  One does
nothing but scan the "track line," while the second observes the outer s t r i p
(∆ ,b∆ ) .

5.11 Modified strip transects

Three modifications of strip transects have been mentioned above.  One
includes corrections for decreasing visibility with distance from the t r a n s e c t
line, and we have elected to cover this situation under right-angle l i n e
transects.  A second is the case where animals, largely marine mammals, a r e
visible only intermittently.  The third has to do with animals that are in f a i r l y
constant motion, as with some small birds.

One basis for dealing with animals that submerge, and thus are n o t
always visible on a transect, assumes a constant diving time (u) and a c o ns t a n t
period on the surface (s) between dives.  This is not particularly sat is factory,
since both quantities may vary, and needs modification. In shipboard counts o f
ringed seals (Phoca hispida), McLaren (1961) assumed that all surfaced seals                          
could be seen out to a fixed distance (r) from the vessel.  This, too, is not a v e r y
reasonable assumption, as quite certainly there will be a decrease in v is ib i l i t y
with distance.  It might, however, be acceptable if this distance (r) is k e p t

reasonably short.  If the average probability ( p
_

 ) that a seal within a strip o f
width 2r will be counted can be estimated, then the observed count (m) w i t h i n
the strip can be translated to an estimate of density as:

                                                                    D^  = 
m

2 r L ( p
_

)
                                              (5.16) 

i.e., the number present is estimated as m/p
_

  and this is divided by the area of a
strip of length L.

McLaren (1961) gave the probability ( p
_

 ) of seeing an individual seal ,
given that it is in the strip, as:

                                                    p = 
t

s+u   + 
s

s+u                                            (5.17)  

where t denotes the duration of the period when a surfaced seal would b e
visible to an observer.  This varies according to the right-angle distance f r o m
the vessel, since the radius of visibility (r), shown in Fig. 5.10 limits the t i m e
an animal can be seen at a given right-angle distance.  If v denotes velocity o f
the vessel, then (see Fig. 5.10):

                                              t = 
y
v   = 

r sinθ
v  
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Fig. 5.10. Dimensions used in shipboard surveys of marine mammals. The a r r o w
denotes the ship's course along a transect line, while the observers scan t h e
semi-circular area of radius r.

McLaren assumed that no point could be kept under observation for a s
long as u minutes, that is, t < u.  Given this restriction, Eq. (5.17) can b e
obtained by considering the two successive intervals representing a dive ( u )
and the succeeding time on the surface (cf. Exercise 5.13.1).  If we make t h e
usual assumption of random transect locations (and thus a uniform p robab i l i t y
of a
seal being present at a given right-angle distance), then Equation 5.17 can b e
"averaged" to obtain:

                                                       p
_

  = 
π
4 

r
v (s+u)   + 

s
s+u                                             (5.18) 

This differs from McLaren's (1961) result (see Eberhardt 1978b).

A similar approach has been employed for censusing whales v isua l ly ,
except that a narrower width of field forward of the vessel is scanned.  Also,
much longer detection distances are postulated, due to the greater visibility o f
"spouting" or "blowing" by the whales.  Doi (1974) developed an expression f o r
the probability of detection.  He also assumed a constant diving time, so t h a t
the same question of the effect of a variable diving time arises in c o n n e c t i o n
with his results.  An important difference in the two approaches is t h a t
McLaren assumes t < u, i.e., that submerged seals may go undetected, even i f
they are in the zone of maximum possible detection directly ahead of t h e
vessel.  Doi, however, postulated a zone within which the observation time i s
long enough that any whales were seen with certainty.  Doi also introduced a
correction factor (K) for the prospect that observers may fail to see some
whales, even though they do surface and "blow."  This factor is:

                                        K = 1 - (1 - 
θp
2θ1

 )s

where θp represents the visual angle of the observer,  θ1 is the angle searched
(on either side of the vessel) and s is the number of observers. Buckland et al.
(1993)  described another method for whales called “cue counting”.
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The second modification to be considered here is that required to dea l
with animals, such as small birds, that are in motion during the course of t h e
survey.  Yapp (1955) proposed an approach based on the kinetic theory o f
gases.  The mathematical aspects were later reviewed by Skellam (1958).  T h e
two equations involved are:

                                                                    D^  = 
z

2 r v                                                    (5.19) 

where D = density of the population, z = number of encounters per unit time, v
= average velocity of the animals relative to the moving observer, and r =
range or radial distance within which an animal must approach the o b s e r v e r
to effect an encounter.

                                                                v2 = u
_

 2 + w
_

 2                                              (5.20)

where u
_

  = average velocity of the organisms and w
_

  = average velocity of t h e
obse rve r .

An important assumption is that the behavior of the animals is n o t
influenced by the presence of the observer.  Eq. (5.19) is based on t h e
assumption that the area in which encounters take place is a circle or radius r .
This, then is the same sort of troublesome assumption encountered before i n
this chapter.  If we let z = m/T, where m is the number of animals observed

during the total time of the survey (T), and also assume  u
_

  = 0, then:

                                                           D^  = 
m

2 r w
_

T
  = 

m
2 r L 

where L represents the total distance traveled by the observer.  We thus h a v e
the usual equation for a simple strip transect.  One can, of course, let

 w
_

  = 0, i.e., assume that the observer sits still and base results on the a ve r a g e
velocity of the organisms:

                                                                  D^  = 
m

2 r u
_

T
                                                    (5.21)  

This has some attractive features, in that the radius (r) can probably b e
determined with reasonable accuracy under such circumstances, and a
motionless observer is less likely to influence behavior of the animals.  A
drawback is in the "representativeness" of the spot selected for observa t ion .
No doubt random selection of several spots would help on this score.  However ,
if the radii vary, as they likely will, t hen questions of the effect of density vs .
cover type may need to be considered.

An important problem with the above method is that of measuring t h e

average velocity of the animals ( u
_

 ).  Clearly this cannot be done during t h e
survey, at least not if the observer is also moving.  However, if the o b s e r v e r
sits still he might then use a stop watch to time movements of animals and t h u s
estimate their velocity.

Little use seems to have been made of Yapp's method, so that it i s
difficult to provide an evaluation based on experience.
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5.12 Survey design

Although much of the discussion of line transect methods is couched i n
terms of results obtained on a single transect line, practical use of the me thod
will frequently require combining results from a number of separate l i n e s
into a single sampling unit.  This will be especially true in terms of v a r i a n c e
calculations, since precautions need to be taken to avoid individual s a m p l i n g
units on which no animals are observed.  As we have already indicated, w e
believe variance estimates based on theory should mainly be used for s u c h
purposes as comparing methods of estimation, appraising bias, and the l ike .
Another important use is in obtaining approximations suitable for es t ima t ing
sample sizes in planning a survey, as in Eqs. (5.14) and (5.15).

In the actual analysis of survey results, we recommend variances b e
estimated directly from the survey estimates, as illustrated in the s e v e r a l
examples.  However, the investigator should not wait until the data are all i n
hand before considering how this is to be done.  The arrangements f o r
analysis of the data should instead be decided at the survey design stage.

Usually the survey will require a number of days for completion so t h a t
a worthwhile precaution is to arrange the sampling plan so that the t r ansec t s
run in the same sub-area are spread out over the total time interval d u r i n g
which the survey is conducted.  Thus "replication in time" is introduced i n t o
the survey, and it may be useful, in analysis of the data, to try to evaluate a n y
trends in time.  When this kind of arrangement is feasible, it will be i m p o r t a n t
to randomize the locations of successive lines falling in the same sub-area.  I n
fact, this may well be the best way to use randomized sampling, in that t h e
separation in time will usually eliminate the need for concern about h a v i n g
two transects fall close together.  When large areas must be dealt with, it w i l l
usually not be possible to use a scheme of this sort.

The above scheme may be illustrated by reference to Fig. 5.11, w h i c h
shows a study area divided into three subunits, denoted by vertical lines in t h e
figure.  One randomly located transect line (L1, L2, and L3) is shown in e a c h
sub-area for each day on four successive days.  To obtain a variance es t imate
on the basis of " interpenetrating," or "replicate" sampling, one s imp l y
calculates as estimate of density for each day, and uses that estimate in t h e
variance calculation.  That is, density is estimated as

                                                                    D^  = 
1
n   ∑

i=1

n
 Di                                           (5.22) 

and variance as

                                                        s2(D̂ ) =   
1

n ( n - 1 ) ∑
i=1

n

 ( D i -  D̂ ) 2

(5.23)

where in this case n = 4.  Note that the variance given is that of a mean, i.e., s(D^

)  is usually described as the standard error.
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For larger areas, travel time will be rather too costly to permit use o f
single transects in each sub-area.  Alternatives are to use several r a n d o m l y
located lines in each sub-area, or to use a systematic arrangement with a
randomly selected starting point.  Suppose three lines in each unit are to b e
used.  Then each base line length (Wi ) is divided into three segments of l e n g t h
W i /3.  A random location is selected in the first and the remaining units spaced
out by the interval Wi/3.  It may be noted that the baselines (Wi) of Fig. 5.11
are not of the same length.  This is because of the irregular shape of t h e
region--it is best to try to keep the areas of the subunits about equal. D i f f e r i ng
lengths of transect line can be handled as described in Example 5.1. Note t h a t
the three systematically placed lines discussed above should be treated as o n e       
transect line in the analysis.

Stratified random sampling (Chapter 4) may well be desirable in l i n e
transect work.  Example 4.6 illustrates use of stratification with a s t r i p
transect. Unfortunately stratified sampling has not been used much with l i n e
transects, so we have little experience to draw on for planning.  One p rospec t
is that the use of variable sampling intensity (by strata) will call for m a k i n g
individual population estimates for each stratum.  Obtaining separate v a r i a n c e
estimates for each stratum may thus require fairly intensive sampling in e a c h
s t ra tum.

A very important feature of survey design is to review the u n d e r l y i n g
assumptions (Sec. 5.9), and to consider whether the proposed design is likely t o
result in violation of one or more of the assumptions. I have repea ted ly
recommended random sampling, as this is the basis for the present theory.  A
practical alternative is a systematic sample with a random start.  With a n i m a l s
that are highly mobile, one has to avoid a sampling pattern that places l i n e s
near enough together that individual animals might be seen twice on the s a m e
systematically arranged sampling unit.

The various assumptions that have to do with response b e h a v i o r
obviously require good knowledge of the species and situation.  Some spec ies
behave in ways that make them doubtful candidates for line t r a n s e c t
censusing.  When right-angle distances are used, the "behavior" of t h e
observer is of crucial importance.  Some design arrangements can help r e d u c e
the effect of observer differences.  For example, if several observers are used
in a single aircraft, for an aerial survey, they should rotate through t h e
viewing positions fairly often (in small aircraft this may be practicable o n l y
on landing).  This practice helps "average out" observer and position effects.
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Fig. 5.11. Randomization of transect lines within sub-areas on successive
census days.
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Since circumstances of line transect surveys are quite variable, it is n o t
possible to review each situation with regard to the assumptions.  T h e
investigator needs to understand them, and to take precautions wh e r e v e r
possible.  Another example is that lines should not be run close to sharp b r e a k s
in cover, topography, etc.  One can, of course, simply not census on the side o f
a line that parallels such a break.  Sometimes it is possible to arrange that t h e
lines go at right-angles to such "discontinuities," and this should help.  A
similar reasoning dictates that transect lines should not run the "long way" o f
an elongated study area.  Methods to minimize errors of measurement and da ta-
recording are of course essential in survey design and planning.

A variety of recommendations concerning transect methods i n
censusing marine mammals appears in Eberhardt et al. (1979).  Some of t h e s e
may be useful in other circumstances. As noted earlier, much more detail o n
recently developed methods appears in the book by Buckland et al. (1993).

5.13 Exercises

5.13.1 Calculate CV2(p) from Table 5.2  using ratio estimation, and calculate a
standard error for p using the individual proportions. Show your calculations.

5.13.2 calculate the weighted average density from Table 5.2 using ratio
estimation, and its standard error. Show your calculations.

5.13.3 Carry out calculations for the Hayne and half-normal methods for the
lizard data of Table 5.4. Show calculations.

5.13.4 Do  the calculations for Example 5.7.

5.13.5 Estimate the Di for Exercise 5.13.3 and tabulate these along with the Di
from Exercise 13.4. Compute coefficients of variation treating each transect as
an independent estimate. Compute correlations among the three sets of data.
Also compute the coefficient of variation for the Cox method given in Eq.
(5.13),  combining the data from the several transects.

5.13.6  Components of variance

It was remarked in Sec. 5.5 that the fixed distance model could be used t o
show that a larger variance results if right-angle distances are used f o r
estimation, rather than the flushing distance.  One way to appreciate this is t o
recall that the basis for estimation for the fixed distance model depends o n
doubling the flushing-radius to determine the probability of observing t h a t
individual.  Doing this with the right-angle distance introduces an addi t ional
component of variability due to the fact that the observed right- a n g l e
distance (x) falls randomly between zero and the flushing-distance ( r ) .
Students with some training in mathematical statistics may want to t r y
calculating coefficients of variation for x and r, assuming x to be u n i f o r m l y
distributed on (o,r) and that r has some underlying distribution, say m(r). One
can then find the two C.V.'s in terms of the first 3 moments (µ1,µ2,µ3) a n d
obtain a notion of the relative difference in efficiency.
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5.13.7  Deriving a sighting probability

Students should attempt to derive Eq. (5.17), assuming s and u are f ixed
and that t < u.  Nothing beyond elementary probability considerations i s
involved, but a diagram helps.

5.13.8  A seal census

McLaren gives data as follows.  Ship's speed 0.12 nautical miles per h o u r ,
visibility limit 0.32 miles, s = 1 minute and u = 3 minutes, and 43 seals w e r e
counted on a given transect.  He does not give the transect length. Students
should convert Eq. (5.16) to represent number of seals (N) in the area sc a n n e d
by the observer and carry out the relevant calculations.


